CHW 469 : Embedded Systems

Instructor: Dr. Ahmed Shalaby <u>http://bu.edu.eg/staff/ahmedshalaby14#</u> <u>https://piazza.com/fci.bu.edu.eg/spring2017/chw469/home</u> bu.edu.eg/staff/ahmedshalaby14#

	📥 🛛 Benha U	niversity Staff Search: Go		Login
	Benha University	You are in: <u>Home</u> Dr. Ahmed Shalaby		Coogle
	Home النسخة العربية	Academic Position: Lecturer Current Administrative Position: Ex-Administrative Position: Faculty: Computers and Informatics		RG
	About			in
	Courses Publications	Department: Computer Science Edu-Mail: ahmed.shalaby@fci.bu.edu.eg		f
	Reports Published books	Mobile: Scientific Name:		Q ⁺
	Workshops / Conferences Supervised PhD	Publications [Titles(4) :: Papers(2) :: Abstracts(4)] Inlinks(6) :: Courses Files(4) Total points :49		You
	Supervised MSc Supervised Projects	News IOT Project Update [2016-11-14] Smart Water Management Irrigation System (SWMIS) project moves		6
	Education Language skills	to field test phase on November 2016. more Research Interests		
	Academic Positions Administrative Positions	System on Chip, Network on Chip, VLSI, Embedded System, High Efficiency Video Coding (HEVC)		
	Memberships and awards			

What ? Embedded Systems

- Embedded computing system: any device that includes a programmable computer but is not itself a general-purpose computer.
- Take advantage of application characteristics to optimize the design.

How? Course Book

Real-Time Interfacing to ARM® Cortex[™]-M Microcontrollers

Embedded Systems

Jonathan W. Valvano

Introduction to ARM® CortexTM-M Microcontrollers

Embedded Systems

Jonathan W. Valvano

Copyrighted Material

http://users.ece.utexas.edu/~valvano/arm/

How ? Course Content

Lec #	Subject	Week #
Lec1	Introduction to Computers and Electronics	Week #1
Lec2	Introduction to Embedded Systems	Week #2
Lec 3	Introduction to the ARM Cortex-M	Week #3
Lec 4	ARM- architecture	Week #4
Lec 5	Introduction to Input/ Output	Week #5
Lec 6	Modular Programming	Week #6
	Mid-term	Week #7
Lec 7	Pointers and Data Structures	Week #8
Lec 8	Variables, Numbers, and Parameter Passing	
Lec 9	Serial and Parallel Port Interfacing	Week #9
Lec 10	Interrupt Programming and Real-time Systems	Week #10
Lec 11	Analog I/O Interfacing	Week #11
Lec 12	Communication Systems	Week #12
Lec 13		Week #13

Assessment

Final-Term Examination Mid-Term Examination Practical Examination Oral Examination

RS-232 USB USB Ethernet Client Digital Port Host Pins 100.000 SV Power InµSD Card-Analog SD Activity Pins DESCRIPTION OF TAXABLE PARTY. Indicator Power Pins Power Pin 33 Reboot-**IOREF** Arduino Indicator Sketch Reset LED Button Select

Websserver LAN Banniels (PressreWebbeve Clattervit Fair Edg Marsh Sook Help CosmOkent: See. £30+N CompliantString: Open. rai+n **ChopAddreshinter** Skeuthoost OupDatiener Dramples. 01.5643 DetWoolierd Oose CELOR 02.D-phui Packabethent. Save Ct(1+5) 00.Attakog Pachobet Sentlining lané Mu Chil+Shitt+S OUCartermolicatio Febret/Diams upload. CMHU! OLC: WHI FeitherCherry lipload Using Processor · Chiefshillell OS.Simps UdpMtpClime: 10.StateWit Page Settion Col+Ind>+P 120%extinewizing bint DONF. **Galatierspecture** WebDiew CENTROM WebCheriffrippeting Prodoninging Cari+Commu (thene) WebServer Out (hi+0) LiquidCrystal CALLANS STITLE OntWin 80 Server 321 THEOR. Time/Dec **UKE-lost** wir.

65

10

10

15

Why? Embedded Systems

Digital System (Why)

- Easier to design.
- Flexibility and functionality. easier to store, transmit and manipulate information.
- Cheaper device.

Digital System (Why) Analog vs. Digital

Most natural quantities (such as temperature, pressure, light intensity, ...) are **analog** quantities that vary continuously.

Digital systems can process, store, and transmit data more efficiently but can only assign discrete values to each point.

History Snapshots

• **1947:** The **transistor** was invented

- **1958: Integrated Circuit (IC),** A transistor was integrated with resistors and capacitors on a single semiconductor chips.
- 1971: first commercially microprocessor, Intel Corporation produced the Intel 4004, giving birth to a family of processors on a chip.
- **1981:** The IBM PC (5150) was announced.

Moore's Law

- Moore predicted that number of transistors on a chip doubles every 1.5 years.
- Moore's Law implies :
 - Processor speed doubles every 1.5 years.
 - Memory density doubles every 1.5 years.
 - Size of chip design team doubles every 1.5 years.
 - Chip cost remains the same.

Moore's Law

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386™ processor	1985	275,000
Intel486 [™] processor	1989	1,200,000
Intel® Pentium® processor	1993	3,100,000
Intel® Pentium® II processor	1997	7,500,000
Intel [®] Pentium [®] III processor	1999	9,500,000
Intel [®] Pentium [®] 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel® Itanium® 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000

http://www.intel.com/pressroom/kits/events/moores_law_40th/

Digital System (How)

Silicon Run

Digital System (How) Silicon ingot Blank wafers Slicer 20 to 30 processing steps Individual dies Tested Patterned wafers (one wafer) dies Bond die to Die Dicer package X tester Packaged dies Tested packaged dies Part Ship to customers tester

IC Technologies

- ASIC (Application Specific Integrated Circuit)
 Full Custom (Transistor Level)
 Standard Cell (Gate Level libraries)
 Gate Array (Gate Level already created of the wafer)
- Filed Programmable Devices

Complex

- Complex Programmable Logic Devices (CPLD)
- Field Programmable Gate Array (FPGA)

□ Simple

- Programmable logic Devices (PLD)
- Off-The-Shelf Components

□ MSI / SSI (Transistor Transistor Logic TTL - Series 7400),

(Complementary Metal Oxide Semiconductor CMOS - Series 4000)

